3.5.21 \(\int \frac {(a+b x^2)^p}{x (d+e x)^2} \, dx\) [421]

3.5.21.1 Optimal result
3.5.21.2 Mathematica [A] (verified)
3.5.21.3 Rubi [A] (verified)
3.5.21.4 Maple [F]
3.5.21.5 Fricas [F]
3.5.21.6 Sympy [F]
3.5.21.7 Maxima [F]
3.5.21.8 Giac [F]
3.5.21.9 Mupad [F(-1)]

3.5.21.1 Optimal result

Integrand size = 20, antiderivative size = 368 \[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^3}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,2,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^3}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {3}{2},-p,2,\frac {5}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{3 d^5}+\frac {e^2 \left (a+b x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 d^2 \left (b d^2+a e^2\right ) (1+p)}-\frac {\left (a+b x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,1+\frac {b x^2}{a}\right )}{2 a d^2 (1+p)}+\frac {b e^2 \left (a+b x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (2,1+p,2+p,\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{\left (b d^2+a e^2\right )^2 (1+p)} \]

output
-e*x*(b*x^2+a)^p*AppellF1(1/2,1,-p,3/2,e^2*x^2/d^2,-b*x^2/a)/d^3/((1+b*x^2 
/a)^p)-e*x*(b*x^2+a)^p*AppellF1(1/2,2,-p,3/2,e^2*x^2/d^2,-b*x^2/a)/d^3/((1 
+b*x^2/a)^p)-1/3*e^3*x^3*(b*x^2+a)^p*AppellF1(3/2,2,-p,5/2,e^2*x^2/d^2,-b* 
x^2/a)/d^5/((1+b*x^2/a)^p)+1/2*e^2*(b*x^2+a)^(p+1)*hypergeom([1, p+1],[2+p 
],e^2*(b*x^2+a)/(a*e^2+b*d^2))/d^2/(a*e^2+b*d^2)/(p+1)-1/2*(b*x^2+a)^(p+1) 
*hypergeom([1, p+1],[2+p],1+b*x^2/a)/a/d^2/(p+1)+b*e^2*(b*x^2+a)^(p+1)*hyp 
ergeom([2, p+1],[2+p],e^2*(b*x^2+a)/(a*e^2+b*d^2))/(a*e^2+b*d^2)^2/(p+1)
 
3.5.21.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 303, normalized size of antiderivative = 0.82 \[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\frac {\left (a+b x^2\right )^p \left (-\frac {2 d \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{(-1+2 p) (d+e x)}+\frac {-\left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \operatorname {AppellF1}\left (-2 p,-p,-p,1-2 p,\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )+\left (1+\frac {a}{b x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {a}{b x^2}\right )}{p}\right )}{2 d^2} \]

input
Integrate[(a + b*x^2)^p/(x*(d + e*x)^2),x]
 
output
((a + b*x^2)^p*((-2*d*AppellF1[1 - 2*p, -p, -p, 2 - 2*p, (d - Sqrt[-(a/b)] 
*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)])/((-1 + 2*p)*((e*(-Sqrt[-(a 
/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x)) + 
(-(AppellF1[-2*p, -p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sq 
rt[-(a/b)]*e)/(d + e*x)]/(((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[ 
-(a/b)] + x))/(d + e*x))^p)) + Hypergeometric2F1[-p, -p, 1 - p, -(a/(b*x^2 
))]/(1 + a/(b*x^2))^p)/p))/(2*d^2)
 
3.5.21.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 306, normalized size of antiderivative = 0.83, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {622, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx\)

\(\Big \downarrow \) 622

\(\displaystyle \int \left (-\frac {2 d e \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^2}+\frac {d^2 \left (a+b x^2\right )^p}{x \left (d^2-e^2 x^2\right )^2}+\frac {e^2 x \left (a+b x^2\right )^p}{\left (e^2 x^2-d^2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 e x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,2,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^3}+\frac {e^2 \left (a+b x^2\right )^{p+1} \left (a e^2+b d^2 (1-p)\right ) \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 d^2 (p+1) \left (a e^2+b d^2\right )^2}+\frac {b e^2 \left (a+b x^2\right )^{p+1} \operatorname {Hypergeometric2F1}\left (2,p+1,p+2,\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 (p+1) \left (a e^2+b d^2\right )^2}+\frac {e^2 \left (a+b x^2\right )^{p+1}}{2 \left (d^2-e^2 x^2\right ) \left (a e^2+b d^2\right )}-\frac {\left (a+b x^2\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {b x^2}{a}+1\right )}{2 a d^2 (p+1)}\)

input
Int[(a + b*x^2)^p/(x*(d + e*x)^2),x]
 
output
(e^2*(a + b*x^2)^(1 + p))/(2*(b*d^2 + a*e^2)*(d^2 - e^2*x^2)) - (2*e*x*(a 
+ b*x^2)^p*AppellF1[1/2, -p, 2, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d^3*(1 
 + (b*x^2)/a)^p) + (e^2*(a*e^2 + b*d^2*(1 - p))*(a + b*x^2)^(1 + p)*Hyperg 
eometric2F1[1, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*d^2*(b 
*d^2 + a*e^2)^2*(1 + p)) - ((a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p 
, 2 + p, 1 + (b*x^2)/a])/(2*a*d^2*(1 + p)) + (b*e^2*(a + b*x^2)^(1 + p)*Hy 
pergeometric2F1[2, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*(b 
*d^2 + a*e^2)^2*(1 + p))
 

3.5.21.3.1 Defintions of rubi rules used

rule 622
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> Int[ExpandIntegrand[x^m*(a + b*x^2)^p, (c/(c^2 - d^2*x^2) - d*(x/(c^2 
 - d^2*x^2)))^(-n), x], x] /; FreeQ[{a, b, c, d, m, p}, x] && ILtQ[n, -1]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.5.21.4 Maple [F]

\[\int \frac {\left (b \,x^{2}+a \right )^{p}}{x \left (e x +d \right )^{2}}d x\]

input
int((b*x^2+a)^p/x/(e*x+d)^2,x)
 
output
int((b*x^2+a)^p/x/(e*x+d)^2,x)
 
3.5.21.5 Fricas [F]

\[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((b*x^2+a)^p/x/(e*x+d)^2,x, algorithm="fricas")
 
output
integral((b*x^2 + a)^p/(e^2*x^3 + 2*d*e*x^2 + d^2*x), x)
 
3.5.21.6 Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\int \frac {\left (a + b x^{2}\right )^{p}}{x \left (d + e x\right )^{2}}\, dx \]

input
integrate((b*x**2+a)**p/x/(e*x+d)**2,x)
 
output
Integral((a + b*x**2)**p/(x*(d + e*x)**2), x)
 
3.5.21.7 Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((b*x^2+a)^p/x/(e*x+d)^2,x, algorithm="maxima")
 
output
integrate((b*x^2 + a)^p/((e*x + d)^2*x), x)
 
3.5.21.8 Giac [F]

\[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((b*x^2+a)^p/x/(e*x+d)^2,x, algorithm="giac")
 
output
integrate((b*x^2 + a)^p/((e*x + d)^2*x), x)
 
3.5.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^2} \, dx=\int \frac {{\left (b\,x^2+a\right )}^p}{x\,{\left (d+e\,x\right )}^2} \,d x \]

input
int((a + b*x^2)^p/(x*(d + e*x)^2),x)
 
output
int((a + b*x^2)^p/(x*(d + e*x)^2), x)